Chemistry Letters 1999 1167 ## The D_{2d} Structure and Easy Rotation around the C=C Bond of the TCNE Dianion Bunji Uno* and Noriko Okumura Gifu Pharmaceutical University, Mitahora-higashi, Gifu 502-8585 (Received July 22, 1999; CL-990646) The structural and spectral characteristics of the tetracyanoethylene dianion (TCNE²⁻) have been investigated. The two-electron addition to the untibonding LUMO of TCNE causes the easy rotation around the C=C bond characterized by the formal single bond. The spectral measurements and MO calculations gives results that TCNE²⁻ preferentially adopts the $D_{\rm 2d}$ and $D_{\rm 2h}$ structures in CH₃CN and CH₂Cl₂, respectively. Considerable interest is currently devoted to a two-electron reduced product of organic molecules, with regard to the interaction with cationic species and hydrogen donors, the electronic multiplicity,² the conformational properties,^{3,4} and the reactivity.⁵ TCNE²⁻ is of especial interest in view of the structure-function relationship of metallocenium salts.³ Miller et al. have proposed for the first time the D_{2d} and skew structures of TCNE2- in the metallocenium salts, with the aid of X-ray crystallographic analyses.³ The structural information is essential to understanding of the peculiar properties and the characteristic function of the organic π-dianions. 1-5 report we have investigated the structural and spectral characteristics of electrogenerated TCNE²⁻ in solvents, showing how it is easy to be rotated around the C=C bond of TCNE²⁻ by molecular environment such as solvents. Sequential electroreduction of TCNE in CH_2Cl_2 and CH_3CN generated the corresponding anion radical and π -dianion, giving the two reversible waves on the cyclic voltammograms. Spectroelectrochemistry for TCNE gave the spectra of TCNE and TCNE electrogenerated in CH_3CN and CH_2Cl_2 , showing clear isosbestic points. The spectral profile of TCNE in CH_3CN was quite similar to that in CH_2Cl_2 , being in good agreement with the previously published spectra.^{3,7} spectrum of TCNE²⁻ in CH₃CN, however, looks very different from that in CH₂Cl₂, as shown in Figure 1. The spectrum in CH₂Cl₂ shows the clear strong peak near 300 nm attributable to the π -conjugation in TCNE²⁻. The spectrum in CH₂Cl₂ may arise form the D_{2h} structure of TCNE²⁻ as well as TCNE, TCNE⁻. The spectrum of TCNE²⁻ in CH₃CN shows no structure attributable to the dianion except for the weak band near 300 nm and the onset of the strong peak near 250 nm to the direction of shorter wavelengths. The geometry for TCNE²⁻ in CH₃CN seems to be far different from that in CH₂Cl₂. CNDO/S-CI calculations were performed to gain more insight into the relation between the spectrum and the structure of TCNE²⁻. The results for the D_{2h} structure indicate that the strong band near 300 nm is assigned to the ${}^{1}B_{3u} \leftarrow {}^{1}A_{g}$ transition delocalized in whole molecule of TCNE²⁻. The calculations for the D_{2d} structure give the single peak in the UV-Vis region which is assigned to overlapping the degenerate ${}^{1}E \leftarrow {}^{1}A_{1}$ transitions localized in the [C(CN)₂] groups separated by the C=C bond. The rotation around the C=C bond of TCNE²⁻ from the D_{2d} structure causes the electronic configuration interaction between the transitions, giving the strong absorption band in the longer wavelength region arising from the ${}^{1}B_{3} \leftarrow {}^{1}A_{1}$ transition under D₂ symmetry. The bands near 300 nm in CH₂Cl₂ and 250 nm in CH₃CN are reasonably assigned to the π - π * bands of TCNE²⁻ adopting the D_{2h} and D_{2d} structures, respectively. The structures of TCNEⁿ⁻ (n = 0, 1, 2) are brought about by the balance between the electronic stabilization and the steric crowding through the C=C bond, as shown in Figure 2. The D_{2h} structure for TCNE and TCNE⁻ is contributed by the electronic stabilization sufficient to overcome the nuclear repulsion Figure 1. Spectral change of 2.76×10^{-4} mol dm⁻³ TCNE in CH₂Cl₂ containing 0.5 mol dm⁻³ tetrabutylammonium perchlorate (TBAP) with electrolysis at an applied potential of -1.5 V vs. Ag/AgNO₃ (in CH₃CN) (a), and 1.45×10^{-4} mol dm⁻³ TCNE in CH₃CN containing 0.1 mol dm⁻³ TBAP with electrolysis at an applied potential of -1.0 V vs. Ag/AgNO₃ (in CH₃CN) (b), corresponding to the TCNE²⁻ generation from TCNE⁻. Figure 2. Change in nuclear repulsion (a) and electronic energies (b) of TCNEⁿ⁻ (n = 0, 1, 2) upon the dihedral angle (θ) of the two C(CN)₂ planes. The nuclear repulsion was calculated for the optimized HF/6-31G(d) geometries of n = 2. electronic energies were calculated by the HF/6-31G(d) at the optimized HF geometries. Plots of □, O and △ donate the energies for n = 0, 1 and 2, respectively. Table 1. Calculated rotational barrier around the C=C bond of TCNE² | | 6-31G(d) | 6-31+G(d) | 6-311+G(d) | |------------------|----------|-----------|------------| | SCF ^b | 50.64 | 50.02 | 49.39 | | $MP2^b$ | 43.11 | 45.13 | 42.34 | | MP4(SDTO) b | 42.86 | 45.08 | 42.72 | ^aEnergies in kJ mol⁻¹. ^bThe full geometrical optimization was performed by the HF method. The MP2 and MP4(SDTQ) calculations were done at the optimized HF geometries. through conjugation between the two C(CN)₂ planes. Table 1 lists the barrier calculated for the internal rotation around the C=C bond of TCNE²⁻. It seems that the rotation barrier is low enough to retain the D_{2d} structure, overcoming the solvation energy for organic π -dianions.⁸ The most stable structure is the D_{2d} structure, and the transition state of rotation is the D_{2h} structure. The calculations provide evidence for the low rotation barrier. The two electron addition to the antibonding LUMO of TCNE significantly affects the length of the C=C bond and the bond order, as shown in Figure 3. This allows the C(CN)2 planes in TCNE²⁻ to be easily rotated around the formal C-C single bond, corresponding decrease of the difference in the electronic energies between the D_{2h} and D_{2d} structures with increasing the n values, as shown in Figure 2. This implies that the charge-transfer from TCNE²⁻ to the solvent or additives significantly affects the energy difference between the D_{2h} and D_{2d} structures. The electron accepting nature of CH₂Cl₂ with low dipole interaction may contribute to the preferable D_{2h} structure of TCNE²⁻. In conclusion, the D_{2d} structure of $TCNE^{2-}$ in CH_3CN Figure 3. Illustration of LUMO of TCNE with the optimized bondlengths and atomic bond population (a), and the optimized bondlengths and atomic bond population of TCNE²⁻ of the D_{2h} (b) and D_{2d} structures (c). proposed here is due to the formal single C-C bond easily rotated. The properties of solvents significantly affect the structure of $TCNE^{2-}$. The D_{2d} and skew structures in crystal of the metallocenium salts previously published are supported in this respect.3 The present conclusion is important to extended discussion of molecular recognition and molecular function of the electrogenerated dianions upon the structure. The authors thank the Computer center of the Institute for Molecular Science, Okazaki National Research Institutes for the use of the NEC HSP computer and the Library Program Gaussian98. ## References and Notes - a) N. Okumura and B. Uno, *Bull. Chem. Soc. Jpn.*, **72**, 1213 (1999). b) N. Gupta and H. Linschitz, *J. Am. Chem. Soc.*, **119**, 6384 (1997). c) X. Zhao, H. Imahori, C. G. Zhan, Y. Sakata, S. Iwata, and T. Kitagawa, *J. Phys. Chem. A*, **101**, 622 (1997). - a) A. Minskey, A. Y. Meyer, R. Poupko, and M. Rabinovitz, J. Am. Chem. Soc., 105, 2164 (1983). b) K. Ebata, W. Setaka, T. Inoue, C. Kabuto, M. Kira, and H. Sakurai, J. Am. Chem. Soc., 120, 1335 - à) D. Á. Dixon and J. S. Miller, J. Am. Chem. Soc., 109, 3656 (1987). b) R. James, B. M. Foxman, D. Guarrera, J. S. Miller, J. C. Calabrese, - and A. H. Reis, Jr., *J. Mater. Chem.*, **6**, 1627 (1996). J. W. Bausch, P. S. Gregory, G. A. Olah, G. K. S. Prakach, P. v. R. Schleyer, and G. A. Segal., *J. Am. Chem. Soc.*, **111**, 3633 (1989). - a) M. Iyoda, S. Sasaki, F. Sultana, M. Yoshida, Y. Kuwatani, and S. Nagase, Tetrahedron Lett., 37, 7987 (1997). b) T. Wakahara, R. Kodama, T. Akasaka, and W. Ando, Bull. Chem. Soc. Jpn., 70, 665 (1997). c) C. D. Stevenson and R. M. Fico, Jr., J. Org. Chem., 60, - The observed first and second half-wave reduction potentials are 0.29 and -0.72 in CH₂Cl₂, respectively, and 0.23 and -0.73 V vs. SCE (saturated calomel electrode) in CH3CN, respectively - a) H. Bock and M. Kleine, Helv. Chim. Acta, 80, 516 (1997). b) O. W. Webster, W. Mahler, and R. E. Benson, J. Am. Chem. Soc., 84, - The solvation energy of TCNE²⁻ calculated by Tomasi's polarized continuum model are -663.67 and -672.23 kJ mol⁻¹ for the D_{2d} and D_{2h} structures, respectively. The solvation energies for the electrogenerated dianions of benzenoid alternant hydrocarbons are experimentally estimated as less negative than -480 kJ mol⁻¹. See, T. Kubota, K. Kano, B. Uno, and T. Konse, Bull. Chem. Soc. Jpn., 60, 3865 (1987).